cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028977 Theta series of 8-d 6-modular lattice G_2 tensor F_4 (or A_2 tensor D_4) with det 1296 and minimal norm 4 in powers of q^2.

Original entry on oeis.org

1, 0, 72, 192, 504, 576, 2280, 1728, 4248, 4800, 7920, 6336, 19416, 10368, 21312, 22464, 33624, 24192, 63048, 32832, 65808, 60864, 83232, 57600, 155640, 76032, 137520, 130944, 180288, 116928, 290736
Offset: 0

Views

Author

Keywords

Comments

Proposition 7.6 [McKay and Sebbar, 2000, p. 272, equ. (7.8)] expresses the theta series as a Schwarzian of A007258 and tau. - Michael Somos, Jun 05 2015

Examples

			G.f. = 1 + 72*x^2 + 192*x^3 + 504*x^4 + 576*x^5 + 2280*x^6 + 1728*x^7 + ...
G.f. = 1 + 72*q^4 + 192*q^6 + 504*q^8 + 576*q^10 + 2280*q^12 + 1728*q^14 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 4), 32); A[1] + 72*A[3] + 192*A[4] + 504*A[5]; /* Michael Somos, Aug 20 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^6], e2 = QPochhammer[ x^2] QPochhammer[ x^3]}, (e2^7 / e1^5 - x e1^7 /e2^5)^2 - 8 x (e1 e2)^2], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
  • PARI
    {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( (B^7 / A^5 - x * A^7 / B^5)^2 - 8 * x * (A * B)^2, n))}; /* Michael Somos, May 27 2012 */
    

Formula

Expansion of ((eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5)^2 - 8 * (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12))^2 in powers of q. - Michael Somos, May 27 2012
A212817(n) = a(n) + 8 * A030209(n). - Michael Somos, May 27 2012
G.f. A(x) = g1(x)^2 * (1 - 4*g2(x) - 16*g2(x)^3 + 16*g2(x)^4) where g1(x) = A033712(x) and g2(x) = A212770(x). - Michael Somos, Apr 19 2015