A029552 Expansion of phi(x) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
1, 3, 4, 7, 13, 19, 29, 43, 62, 90, 126, 174, 239, 325, 435, 580, 769, 1007, 1313, 1702, 2191, 2808, 3580, 4539, 5735, 7216, 9036, 11278, 14028, 17383, 21474, 26448, 32471, 39759, 48550, 59123, 71829, 87053, 105249, 126975, 152858, 183623
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 13*x^4 + 19*x^5 + 29*x^6 + 43*x^7 + ... G.f. = 1/q + 3*q^23 + 4*q^47 + 7*q^71 + 13*q^95 + 19*q^119 + 29*q^143 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^2 / QPochhammer[ q, q^2], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 17 2004 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^2), n));} /* Michael Somos, Sep 17 2004 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, 2*n, prod(i=1, k, (1 -x^(2*n + 1-i)) / (1 - x^i))), n^2-n))}; /* Michael Somos, Sep 17 2004 */
Formula
Expansion of q^(1/24) * eta(q^2)^5 /(eta(q)^3 * eta(q^4)^2) in powers of q. - Michael Somos, Sep 17 2004
Euler transform of period 4 sequence [3, -2, 3, 0, ...]. - Michael Somos, Sep 17 2004
G.f. A(x) is the limit of x^(n^2) P_{2n}(1/x) where P_n(q) = Sum_{k=0..n} C(n,k;q) and C(n,k;q) is q-binomial coefficients. See A083906 for P_n. - Michael Somos, Sep 17 2004
G.f.: (1 + 2 * Sum_{k>0} x^(k^2)) / (Product_{k>0} (1 - x^k)).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(7/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, May 01 2017
Expansion of chi(x)^3/chi(-x^2) = chi(x)^2/chi(-x) = chi(-x^2)^2/chi(-x)^3 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Apr 24 2023
Comments