Original entry on oeis.org
0, 0, 0, 0, 1, 5, 30, 210, 1470, 13230, 132300, 1455300, 17671500, 229729500, 3216213000, 48243195000, 771323553000, 13112500401000, 236025007218000, 4484475137142000, 89692802577378000, 1883548854124938000, 41438074790748636000, 953075720187218628000
Offset: 0
A293211
Triangle T(n,k) is the number of permutations on n elements with at least one k-cycle for 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 2, 15, 9, 8, 6, 76, 45, 40, 30, 24, 455, 285, 200, 180, 144, 120, 3186, 1995, 1400, 1260, 1008, 840, 720, 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040, 229384, 142695, 103040, 79380, 72576, 60480, 51840, 45360, 40320, 2293839, 1427895, 1030400, 793800, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1
T(n,k) (the first 8 rows):
: 1;
: 1, 1;
: 4, 3, 2;
: 15, 9, 8, 6;
: 76, 45, 40, 30, 24;
: 455, 285, 200, 180, 144, 120;
: 3186, 1995, 1400, 1260, 1008, 840, 720;
: 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040;
...
T(4,3)=8 since there are exactly 8 permutations on {1,2,3,4} with at least one 3-cycle: (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), and (4)(132).
-
T:=(n,k)->n!*sum((-1)^(j+1)*(1/k)^j/j!,j=1..floor(n/k)); seq(seq(T(n,k),k=1..n),n=1..10);
-
Table[n!*Sum[(-1)^(j + 1)*(1/k)^j/j!, {j, Floor[n/k]}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Oct 02 2017 *)
Showing 1-2 of 2 results.
Comments