A029729 Degree of the variety of pairs of commuting n X n matrices.
1, 3, 31, 1145, 154881, 77899563, 147226330175, 1053765855157617, 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463, 1862632561783036151478238040096092649, 11143500837236042423379349834982088594105985
Offset: 1
Examples
n=1: Degree of C X C which is 1. n=2: The degree can be calculated by hand to be 3. n=3: See Macaulay manual (link above): one of steps in proof that variety for 3 X 3 is Cohen-Macaulay is to compute the degree which is 31. (n=4) Matt Clegg (CS at UCSD) and Nolan Wallach using 10 Sun Workstations and a distributed Grobner Basis package (in 1993). (2(e1 + e2 + e3 + e4) + b1 + b2 + b3 + b4)(G + G e2 + b2)(e1 e3 b2) = 12 (G + G e2 + b2)(e1 e3 b2) with G = 3, therefore a(2) = 3
Links
- Paul Zinn-Justin, Table of n, a(n) for n = 1..16
- Jan de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
- P. Di Francesco and P. Zinn-Justin, Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties, Comm. Math. Phys., 262(2):459-487, 2006; arXiv preprint, arXiv:math-ph/0412031, 2004-2005.
- A. Garbali and P. Zinn-Justin, Shuffle algebras, lattice paths and the commuting scheme, arXiv:2110.07155 [math.RT], 2021-2022. See also Macaulay2 code to generate the sequence.
- A. Knutson and P. Zinn-Justin, A scheme related to the Brauer loop model, Adv. Math., 214(1):40-77, 2007, arXiv preprint, arXiv:math/0503224 [math.AG], 2005-2006.
- Macaulay 2 Manual, Test of matrix routines, Viewed May 03 2016.
- M. J. Martins, B. Nienhuis, and R. Rietman, An Intersecting Loop Model as a Solvable Super Spin Chain, arXiv:cond-mat/9709051 [cond-mat.stat-mech], 1997; Phys. Rev. Lett. Vol. 81 (1998) pp. 504-507.
- Ada Stelzer and Alexander Yong, Combinatorial commutative algebra rules, arXiv:2306.00737 [math.CO], 2023.
Crossrefs
Cf. A005130.
Formula
There is a formula in terms of divided differences operators (too complicated to reproduce here).
Extensions
Entry revised based on comments from Paul Zinn-Justin, Mar 14 2005
Terms a(12) and beyond from Paul Zinn-Justin, Mar 05 2023
Comments