A029731 Palindromic in bases 10 and 16.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 353, 626, 787, 979, 1991, 3003, 39593, 41514, 90209, 94049, 96369, 98689, 333333, 512215, 666666, 749947, 845548, 1612161, 2485842, 5614165, 6487846, 9616169, 67433476, 90999909, 94355349, 94544549, 119919911
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..81
- Patrick De Geest, Palindromic numbers beyond base 10
Crossrefs
Programs
-
Maple
N:= 9: # to get all terms with up to N decimal digits qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc: digrev:= proc(k,b) local L,n; L:= convert(k,base,b); n:= nops(L); add(L[i]*b^(n-i),i=1..n); end proc: Res:= $0..9: for d from 2 to N do if d::even then m:= d/2; Res:= Res, seq(qpali(n*10^m + digrev(n,10),16), n=10^(m-1)..10^m-1); else m:= (d-1)/2; Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n,10),16), y=0..9), n=10^(m-1)..10^m-1); fi od: Res; # Robert Israel, Nov 23 2014
-
Mathematica
A029731Q = PalindromeQ@# && IntegerReverse[#, 16] == # &; Select[Range[10^5], A029731Q] (* JungHwan Min, Mar 02 2017 *) Select[Range[10^7], Times @@ Boole@ Map[# == Reverse@ # &, {IntegerDigits@ #, IntegerDigits[#, 16]}] > 0 &] (* Michael De Vlieger, Mar 03 2017 *)
-
Python
def palQ16(n): # check if n is a palindrome in base 16 s = hex(n)[2:] return s == s[::-1] def palQgen10(l): # unordered generator of palindromes of length <= 2*l if l > 0: yield 0 for x in range(1,10**l): s = str(x) yield int(s+s[-2::-1]) yield int(s+s[::-1]) A029731_list = sorted([n for n in palQgen10(6) if palQ16(n)]) # Chai Wah Wu, Nov 25 2014