A029760 A sum with next-to-central binomial coefficients of even order, Catalan related.
1, 8, 47, 244, 1186, 5536, 25147, 112028, 491870, 2135440, 9188406, 39249768, 166656772, 704069248, 2961699667, 12412521388, 51854046982, 216013684528, 897632738722, 3721813363288, 15401045060572, 63616796642368, 262357557683422, 1080387930269464
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1657
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
Programs
-
Mathematica
a[n_] := (n+3)^2 CatalanNumber[n+2]/2 - 2^(2n+3); Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 25 2018 *)
Formula
a(n) = 4^(n+1)*Sum_{k=1..n+1} binomial(2k, k-1)/4^k = ((n+3)^2)*C(n+2)/2-2^(2*n+3), C = Catalan. Also a(n+1)=4*a(n)+binomial(2(n+2), n+1).
G.f.: (d/dx)c(x)/(1-4*x), where c(x) = g.f. for Catalan numbers; convolution of A001791 and powers of 4. G.f. also c(x)^2/(1-4*x)^(3/2); convolution of Catalan numbers A000108 C(n), n >= 1, with A002457; convolution of A008549(n), n >= 1, with A000984 (central binomial coefficients).
a(n) = Sum_{k=0..n+1} A039598(n+1,k)*k^2. - Philippe Deléham, Dec 16 2007
Comments