A029829 Eisenstein series E_16(q) (alternate convention E_8(q)), multiplied by 3617.
3617, 16320, 534790080, 234174178560, 17524001357760, 498046875016320, 7673653657232640, 77480203842286080, 574226476491096000, 3360143509958850240, 16320498047409790080, 68172690124863440640
Offset: 0
Keywords
References
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Links
Crossrefs
Programs
-
Maple
E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(16);
-
Mathematica
terms = 12; E16[x_] = 3617 + 16320*Sum[k^15*x^k/(1 - x^k), {k, 1, terms}]; E16[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
PARI
a(n)=if(n<1,3617*(n==0),16320*sigma(n,15))