A029831 Eisenstein series E_24(q) (alternate convention E_12(q)), multiplied by 236364091.
236364091, 131040, 1099243323360, 12336522153621120, 9221121336284413920, 1562118530273437631040, 103486260766565509822080, 3586400651444203277717760, 77352372210526124884754400, 1161399411211600265764157280
Offset: 0
References
- J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
Links
Crossrefs
Programs
-
Mathematica
terms = 10; E24[x_] = 236364091 + 131040*Sum[k^23*x^k/(1 - x^k), {k, 1, terms}]; E24[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
-
PARI
a(n)=if(n<1,236364091*(n==0),131040*sigma(n,23))
Formula
a(n) = 49679091*A282330(n) + 176400000*A282332(n) + 10285000*A282331(n). - Seiichi Manyama, Feb 12 2017