cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029853 Number of connected functions on n points with a loop of length 4.

Original entry on oeis.org

1, 1, 4, 11, 35, 97, 282, 792, 2243, 6275, 17602, 49206, 137713, 385208, 1078667, 3022342, 8478199, 23807190, 66932592, 188394855, 530911452, 1497892857, 4230987944, 11964356354, 33869704270, 95982410945, 272279600817, 773153124315, 2197492308752
Offset: 4

Views

Author

Keywords

Crossrefs

Column 4 of A339428.

Programs

  • Mathematica
    nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol =
    SolveAlways[
      0 == Series[
        f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
      x]; b = Flatten[Table[a[n], {n, 1, nn}] /. sol]; CoefficientList[
    Series[CycleIndex[CyclicGroup[4], s] /.
       Table[s[i] -> Sum[b[[k]] x^(k*i), {k, 1, nn}], {i, 1, 4}], {x, 0,
    nn}], x] (* Geoffrey Critzer, Aug 08 2013 *)

Formula

G.f.: A(x) = ( B(x)^4 + B(x^2)^2 + 2*B(x^4) )/4 where B(x) is the o.g.f. for A000081. - Geoffrey Critzer, Aug 09 2013
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020