cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029872 Low temperature series for spin-1/2 Ising specific heat on 2D square lattice.

Original entry on oeis.org

16, 72, 288, 1200, 5376, 25480, 125504, 634608, 3269680, 17086168, 90282240, 481347152, 2585485504, 13974825960, 75941188736, 414593263952, 2272626444528, 12502223573304, 68996534259040, 381858968527680, 2118806030647328, 11783826597027256, 65674579024955904
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

Crossrefs

Cf. A002890 (partition function).
Equals A029873/4 or A029874*8.

Programs

  • Mathematica
    CoefficientList[Series[1/(Pi*x^2*(-1 + x^2)^2) * (-2*Pi*x*(1 + x)^2 - (1 + x)^4 * EllipticE[16*(-1 + x)^2*x/(1 + x)^4] + (1 + 30*x^2 + x^4) * EllipticK[16*(-1 + x)^2*x/(1 + x)^4]), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 28 2024 *)

Formula

G.f.: ((u^4 + 30*u^2 + 1) * K(x) / Pi - (u+1)^4 * E(x) / Pi - 2*u*(u+1)^2) / (u^2 * (u^2-1)^2) = 4 * (f(u) * (f'(u)/u + f''(u)) - (f'(u))^2) / f(u)^2, where f(u) is the g.f. of A002890, K(x) and E(x) are the complete elliptic integrals, x = 4*(1-u)*sqrt(u)/(1+u)^2. - Andrey Zabolotskiy, Feb 15 2022
a(n) ~ 2 * (1 + sqrt(2))^(2*n+4) / (Pi*n). - Vaclav Kotesovec, Apr 28 2024

Extensions

Terms a(18) and beyond from Andrey Zabolotskiy, Feb 15 2022