A029878 Inverse Euler transform of {A001285(0), A001285(1), ...} where A001285(n) is Thue-Morse sequence.
1, 1, 0, -2, 1, 0, -1, 1, 2, -3, -2, 5, 1, -6, 1, 8, -6, -10, 14, 7, -25, 8, 36, -34, -41, 72, 25, -125, 29, 187, -150, -216, 361, 137, -657, 159, 977, -810, -1135, 1937, 752, -3558, 792, 5361, -4327, -6318, 10641, 4281, -19848, 4286
Offset: 1
Keywords
Examples
(1-x)^(-1)*(1-x^2)^(-1)*(1-x^4)^2*(1-x^5)^(-1)* ... = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + ... .
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Euler Transform
Formula
Product_{k>=1} (1-x^k)^(-a(k)) = 1 + Sum_{k>=1} A001285(k-1)*x^k. - Seiichi Manyama, Jun 25 2018
Extensions
Name edited by Seiichi Manyama, Jun 25 2018