cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029912 Start with n; repeatedly sum prime factors (counted with multiplicity) and add 1, until reach 1, 6 or a prime.

Original entry on oeis.org

1, 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 11, 7, 7, 7, 11, 7, 7, 7, 11, 11, 11, 11, 7, 7, 13, 11, 7, 7, 17, 7, 13, 13, 7, 7, 7, 7, 7, 7, 7, 13, 11, 7, 7, 7, 17, 7, 23, 11, 13, 13, 7, 7, 7, 13, 19, 17, 7, 7, 7, 7, 13, 13, 7, 7, 7, 7, 19, 19, 7, 7, 13, 7, 7, 7, 23, 7
Offset: 1

Views

Author

Keywords

Comments

If p is in A023200 then a(3*p) = p+4. It appears that all n > 35 such that a(n) > n/3 are 3*p for p in A023200. - Robert Israel, Dec 18 2019

Examples

			20 -> 2+2+5+1 = 10 -> 2+5+1 = 8 -> 2+2+2+1 = 7 so a(20)=7.
		

Programs

  • Maple
    f:= proc(n) option remember;
      local v;
      v:= add(t[1]*t[2],t=ifactors(n)[2])+1;
      if v = 1 or v = 6 or isprime(v) then return v fi;
      procname(v)
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 18 2019
  • Mathematica
    a[n_] := a[n] = If[n==1, 1, Module[{v}, v = Sum[t[[1]]*t[[2]], {t, FactorInteger[n]}]+1; If[v==1 || v==6 || PrimeQ[v], Return[v]]; a[v]]];
    a /@ Range[100] (* Jean-François Alcover, Aug 21 2022, after Robert Israel *)