cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029930 If 2n = Sum 2^e_i, a(n) = Product 2^e_i.

Original entry on oeis.org

1, 2, 4, 8, 8, 16, 32, 64, 16, 32, 64, 128, 128, 256, 512, 1024, 32, 64, 128, 256, 256, 512, 1024, 2048, 512, 1024, 2048, 4096, 4096, 8192, 16384, 32768, 64, 128, 256, 512, 512, 1024, 2048, 4096, 1024, 2048, 4096, 8192, 8192, 16384, 32768, 65536, 2048
Offset: 0

Views

Author

Keywords

Examples

			14 = 8+4+2 so a(7) = 8*4*2 = 64.
		

Crossrefs

A bisection of A059867.

Programs

  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 1,
    ifelse(n::even, 2^HammingWeight(n/2)*a(n/2), 2*a(n-1))) end:
    seq(a(n), n = 0..48); # Peter Luschny, Oct 30 2021
  • Mathematica
    e1[n_] := Total[IntegerDigits[n, 2]]; a[0] = 1; a[n_] := a[n] = If[EvenQ[ n], 2^e1[n/2] a[n/2], 2 a[n-1]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    a(n) = {my(bd = Vecrev(binary(n))); prod(k=1, #bd, if (bd[k], 2^k, 1));} \\ Michel Marcus, Mar 07 2016

Formula

From Ralf Stephan, Jun 19 2003: (Start)
G.f.: Prod_{k>=0} 1+2^(k+1)x^2^k.
a(0) = 1, a(2n) = 2^e1(n)*a(n), a(2n+1) = 2a(2n), where e1(n) = A000120(n).
a(n) = 2^A029931(n). (End)