A029932 Primes with record values of the least positive prime primitive root.
3, 7, 23, 41, 109, 191, 271, 2791, 11971, 31771, 190321, 2080597, 3545281, 4022911, 73189117, 137568061, 443571241, 565822531, 1160260711, 1622723341, 31552100581, 81651092041, 96736641541, 1867622877121, 5000346134911
Offset: 1
References
- R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLV.
Links
- Tomás Oliveira e Silva, Counts of least primitive roots of prime numbers (Artin's conjecture)
- Tomás Oliveira e Silva, Least prime primitive roots
- A. Paszkiewicz and A. Schinzel, On the least prime primitive root modulo a prime, Math. Comp. 71 (2002), no. 239, 1307-1321.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
- Index entries for primes by primitive root
Programs
-
Mathematica
(* This program is not suitable for computing more than a dozen terms. *) max = 10^8; pprQ[r_, p_] := Union[Table[PowerMod[r, i, p], {i, 1, p+1}]] == coprimes; ppr[p_] := With[{spr = PrimitiveRoot[p]}, If[PrimeQ[spr], spr, coprimes = Select[Range[p-1], CoprimeQ[#, p]&]; For[r = NextPrime[ spr], True, r = NextPrime[r], If[pprQ[r, p], Return[r]]]]]; Reap[ For[ record=1; p=3, p
record, record = ppr1; Print["p = ", p, " ppr = ", record]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2016 *)
Extensions
Corrected by Jud McCranie, Jan 04 2001
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 19 2008
Comments