A029968 Palindromic in bases 13 and 10.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 222, 313, 353, 444, 575, 666, 797, 1111, 6776, 8778, 24542, 25452, 26362, 56265, 311113, 2377732, 2713172, 2832382, 2906092, 8864688, 10122101, 13055031, 20244202, 20944902, 23177132, 23877832
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..76
- P. De Geest, Palindromic numbers beyond base 10
Crossrefs
Programs
-
Mathematica
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 13], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 03 2004 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 13] &] (* Robert Price, Nov 09 2019 *)
-
Python
from gmpy2 import digits def palQ(n,b): # check if n is a palindrome in base b s = digits(n,b) return s == s[::-1] def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l if l > 0: yield 0 for x in range(1,l+1): for y in range(10**(x-1),10**x): s = str(y) yield int(s+s[-2::-1]) for y in range(10**(x-1),10**x): s = str(y) yield int(s+s[::-1]) A029968_list = [n for n in palQgen10(9) if palQ(n,13)] # Chai Wah Wu, Dec 01 2014