A030009 Euler transform of primes.
1, 2, 6, 15, 37, 85, 192, 414, 879, 1816, 3694, 7362, 14480, 28037, 53644, 101379, 189587, 350874, 643431, 1169388, 2108045, 3770430, 6694894, 11804968, 20679720, 35999794, 62298755, 107198541, 183462856, 312357002, 529173060, 892216829, 1497454396, 2502190992
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A007441.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*ithprime(d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*Prime[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
-
PARI
a(n)=if(n<0,0,polcoeff(prod(i=1,n,(1-x^i)^-prime(i),1+x*O(x^n)),n))
-
SageMath
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: nth_prime(n)) print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: Product_{n>=1} (1-x^n)^(-prime(n)).