A030052 Smallest number whose n-th power is a sum of distinct smaller positive n-th powers.
3, 5, 6, 15, 12, 25, 40, 84, 47, 63, 68, 81, 102, 95, 104, 162, 123
Offset: 1
Examples
3^1 = 2^1 + 1^1, and there is no smaller solution given that the r.h.s. is the smallest possible sum of distinct positive powers. For n = 2, one sees immediately that 3 is not a solution (3^2 > 2^2 + 1^2) and one can check that 4^2 isn't equal to Sum_{x in A} x^2 for any subset A of {1, 2, 3}. Therefore, the well known hypotenuse number 5 (cf. A009003) with 5^2 = 4^2 + 3^2 provides the smallest possible solution. a(17) = 123 since 123^17 = Sum {3, 5, 7, 8, 9, 11, 13, 16, 17, 19, 30, 33, 34, 35, 38, 40, 41, 43, 51, 52, 54, 55, 58, 59, 60, 63, 66, 69, 70, 71, 72, 73, 75, 76, 81, 86, 87, 88, 89, 90, 92, 95, 98, 106, 107, 108, 120}^17, with obvious notation. [Solution found by Jeremy Sawicki on July 3, 2020, see Al Zimmermann's Programming Contests link.] - _M. F. Hasler_, Jul 18 2020 For more examples, see the link.
Links
- R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51 (1948) 466-468.
- Various authors, How each power is decomposed
- Eric Weisstein's World of Mathematics, Diophantine Equation.
- Al Zimmermann, Sum Of Powers: Final Report, Al Zimmermann's Programming Contests, April-July 2020
Crossrefs
Programs
-
PARI
A030052(n, m=n\/log(2)+1, s=0)={if(!s, until(A030052(n, m, (m+=1)^n),), s < 2^n || s > (m+n+1)*m^n\(n+1), m=s<2, m=min(sqrtnint(s, n), m); s==m^n || until( A030052(n, m-1, s-m^n) || (s>=(m+n)*(m-=1)^n\(n+1) && !m=0), )); m} \\ Does exhaustive search to find the least solution m. Use optional 2nd arg to specify a starting value for m. Calls itself with nonzero 3rd (optional) argument: in this case, returns nonzero iff s is the sum of powers <= m^n. - For illustration only: takes very long already for n = 8 and n >= 10. - M. F. Hasler, May 25 2020
Formula
a(n) <= A001661(n)^(1/n) + 1. - M. F. Hasler, May 25 2020
Extensions
a(8)-a(10) found by David W. Wilson
a(11) from Al Zimmermann, Apr 07 2004
a(12) from Al Zimmermann, Apr 13 2004
a(13) from Manol Iliev, Jan 04 2010
a(14) and a(15) from Manol Iliev, Apr 28 2011
a(16) and a(17) due to Jeremy Sawicki, added by M. F. Hasler, Jul 20 2020
Comments