A030140 The nonsquares squared.
4, 9, 25, 36, 49, 64, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025
Offset: 1
Examples
a(1)=2^2, a(2)=3^2, a(3)=5^2, a(4)=6^2, a(5)=7^2, ..., a(n)=(integer which is not a perfect square)^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[(n + Floor(1/2 + Sqrt(n)))^2: n in [1..60]]; // Vincenzo Librandi, Apr 06 2020
-
Maple
a:=proc(n) if type(sqrt(n),integer)=false then n^2 else fi end: seq(a(n),n=1..70); # Emeric Deutsch, Apr 11 2007
-
Mathematica
a[n_] := (n + Floor[1/2 + Sqrt[n]])^2; Array[a, 50] (* Jean-François Alcover, Apr 05 2020 *)
-
Python
from math import isqrt def A030140(n): return (n+(k:=isqrt(n))+int(n>=k*(k+1)+1))**2 # Chai Wah Wu, Jun 17 2024
Formula
a(n) = A000037(n)^2.
Sum_{n>=1} 1/a(n) = zeta(2) - zeta(4) = A013661 - A013662 = 0.5626108331... - Amiram Eldar, Nov 14 2020
{a(n) : n >= 1} = {A225546(6m+3) : m >= 0}. - Peter Munn, Nov 17 2022
Extensions
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
Comments