cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030215 Expansion of eta(q^9)*eta(q^15).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansion of eta(q^k)*eta(q^(24 - k)): A030199 (k=1), A030201 (k=3), A030213 (k=5), A030214 (k=7), this sequence (k=9), A030216 (k=10), A030217 (k=11).

Programs

  • Mathematica
    eta = QPochhammer;
    CoefficientList[q eta[q^9] eta[q^15] + O[q]^100, q] (* Jean-François Alcover, Feb 21 2021 *)

Formula

Expansion of x * Product_{k>=1} (1 - x^(9*k)) * (1 - x^(15*k)). - Seiichi Manyama, Oct 18 2016