cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030223 Number of achiral triangular n-ominoes (n-iamonds) (holes are allowed).

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 12, 13, 30, 36, 80, 97, 213, 266, 578, 737, 1589, 2051, 4408, 5747, 12333, 16213, 34737, 45979, 98367, 131007, 279902, 374781, 799732, 1075793, 2293193, 3097415, 6596787, 8942350, 19031088, 25880367, 55043561, 75068945, 159570624, 218189681
Offset: 1

Views

Author

Keywords

Comments

These are the achiral polyominoes of the regular tiling with Schläfli symbol {3,6}. An achiral polyomino is identical to its reflection. This sequence can most readily be calculated by enumerating achiral fixed polyominoes for three situations with a given axis of symmetry: 1) fixed polyominoes with an axis of symmetry composed of cell edges, A364485; 2) fixed polyominoes with a vertical axis of symmetry composed of cell altitudes and a vertex as the highest polyomino point on this axis, A364486; and 3) fixed polyominoes with a vertical axis of symmetry composed of cell altitudes and an edge center as the highest polyomino point on this axis, A364487. Those three sequences include each achiral polyomino exactly twice. - Robert A. Russell, Jul 26 2023

Crossrefs

Cf. A006534 (oriented), A000577 (unoriented), A030224 (chiral), A001420 (fixed).
Calculation components: A364485, A364486, A364487.
Other tilings: A030227 {4,4}, A030225 {6,3}.

Formula

From Robert A. Russell, Jul 27 2023: (Start)
a(n) = (A364486(n) + A364487(n)) / 2, n odd.
a(n) = (A364485(n/2) + A364486(n) + A364487(n)) / 2, n even.
a(n) = 2*A000577(n) - A006534(n) = A006534(n) - 2*A030224(n) = A000577(n) - A030224(n). (End)

Extensions

a(19) to a(28) from Joseph Myers, Sep 24 2002
Additional terms from Robert A. Russell, Jul 26 2023
Name edited by Robert A. Russell, Jul 27 2023