cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030225 Number of achiral hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 1, 3, 4, 11, 17, 46, 75, 202, 341, 914, 1581, 4222, 7436, 19794, 35357, 93859, 169558, 449039, 818793, 2163827, 3976636, 10489341, 19406704, 51103471, 95099113, 250040802, 467679257, 1227941119, 2307128946, 6049886572, 11412695367, 29891913576, 56593284153, 148067307799
Offset: 1

Views

Author

Keywords

Comments

These are polyominoes of the Euclidean regular tiling of hexagons with Schläfli symbol {6,3}. This sequence can most readily be calculated by enumerating fixed polyominoes for three situations: 1) fixed polyominoes with a horizontal axis of symmetry along an edge of a cell with no cell centered on that axis, A001207(n/2), 2) fixed polyominoes with a horizontal axis of symmetry that is a diagonal of at least one cell, A347258, and 3) fixed polyominoes with a horizontal axis of symmetry that joins the midpoints of opposite edges of at least one cell, A347257. These three sequences include each achiral polyomino exactly twice. - Robert A. Russell, Aug 24 2021

Crossrefs

Cf. A006535 (oriented), A000228 (unoriented), A030226 (chiral).
Calculation components: A001207, A347257, A347258.
Other tilings: A030223 {3,6}, A030227 {4,4}.

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A000228 = A@000228;
    A006535 = A@006535;
    a[n_] := 2 A000228[[n]] - A006535[[n]];
    a /@ Range[20] (* Jean-François Alcover, Feb 22 2020 *)

Formula

From Robert A. Russell, Aug 24 2021: (Start)
For odd n, a(n) = (A347257(n) + A347258(n)) / 2; for even n, a(n) = (A001207(n/2) + A347257(n) + A347258(n)) / 2.
a(n) = 2*A000228(n) - A006535(n) = A006535(n) - 2*A030226(n) = A000228(n) - A030226(n). (End)

Extensions

More terms from Joseph Myers, Sep 21 2002
Name edited by Robert A. Russell, Aug 24 2021