cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334283 Numerators of power series coefficients of A(x) satisfying A(A(x)) = x + Sum_{k>=2} prime(k-1) * x^k.

Original entry on oeis.org

1, 1, 1, 3, -3, 11, -47, 291, -361, -327, 2651, 8117, -23761, -920509, 3401813, 48080231, -949833905, -533061737, 47194458351, 9309105461, -5717668358773, 5794759242411, 416358013987311, -3775846647202969, -144292064358491357, 269618719159718919, 14658236743430975341
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 21 2020

Keywords

Examples

			1, 1, 1/2, 3/4, -3/8, 11/8, -47/16, 291/64, -361/128, -327/64, 2651/256, 8117/512, -23761/1024, -920509/2048, ...
		

Crossrefs

Cf. A008578, A030274, A030278, A334284 (denominators).

A334284 Denominators of power series coefficients of A(x) satisfying A(A(x)) = x + Sum_{k>=2} prime(k-1) * x^k.

Original entry on oeis.org

1, 1, 2, 4, 8, 8, 16, 64, 128, 64, 256, 512, 1024, 2048, 2048, 16384, 32768, 16384, 65536, 131072, 262144, 262144, 524288, 2097152, 4194304, 2097152, 8388608, 8388608, 16777216, 134217728, 67108864, 1073741824, 2147483648, 1073741824, 4294967296
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 21 2020

Keywords

Examples

			1, 1, 1/2, 3/4, -3/8, 11/8, -47/16, 291/64, -361/128, -327/64, 2651/256, 8117/512, -23761/1024, -920509/2048, ...
		

Crossrefs

Cf. A008578, A030275, A030278, A334283 (numerators).

A316186 Expansion of e.g.f. P(P(x)), where P(x) = Sum_{k>=1} prime(k)*x^k/k!.

Original entry on oeis.org

4, 18, 104, 687, 5064, 40934, 358083, 3346832, 33123000, 345219919, 3777134694, 43291666298, 518855171115, 6491738816768, 84656365477452, 1148895613585775, 16201725990730392, 237030534528945348, 3591398122456079285, 56254812062478841340, 909319044063443870702
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2018

Keywords

Comments

Self-composition of e.g.f. of A000040 (prime numbers).

Examples

			E.g.f.: A(x) = 4*x + 18*x^2/2! + 104*x^3/3! + 687*x^4/4! + 5064*x^5/5! + 40934*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    p[x_] := p[x] = Sum[Prime[k] x^k/k!, {k, 21}]; a[n_] := a[n] = SeriesCoefficient[p[p[x]], {x, 0, n}]; Table[n! a[n], {n, 21}]
Showing 1-3 of 3 results.