cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A003781 Expansion of theta series of {E_7}* lattice in powers of q^(1/2).

Original entry on oeis.org

1, 0, 0, 56, 126, 0, 0, 576, 756, 0, 0, 1512, 2072, 0, 0, 4032, 4158, 0, 0, 5544, 7560, 0, 0, 12096, 11592, 0, 0, 13664, 16704, 0, 0, 24192, 24948, 0, 0, 27216, 31878, 0, 0, 44352, 39816, 0, 0, 41832, 55944, 0, 0, 72576, 66584, 0, 0, 67536, 76104, 0, 0, 100800
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 56*x^3 + 126*x^4 + 576*x^7 + 756*x^8 + 1512*x^11 + 2072*x^12 + ...
G.f. = 1 + 56*q^(3/2) + 126*q^2 + 576*q^(7/2) + 756*q^4 + 1512*q^(11/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125.
  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 141.

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(4), 7/2), 19) [1] ; /* Michael Somos, Jun 10 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 (EllipticTheta[ 3, 0, q]^4 + 7 EllipticTheta[ 4, 0, q]^4) / 8, {q, 0, n}]; (* Michael Somos, Aug 27 2013 *)
  • PARI
    {a(n) = local(A, B, m); n++; m=n%4; n\=4; if( n<0 || m>1, 0, A = sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n)); B = subst(A, x, -x); polcoeff( if(m==0, (A^4 - B^4) * (8*A^4 - B^4) / 2 / sum(k=0, sqrtint( 4*n + 1)\2, x^(k^2 + k), x * O(x^n)), 8*A^7 - 7*A^3 * subst(A, x, -x)^4 ), n))}; /* Michael Somos, Jun 11 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A^3 * (A^4 + 7 * subst(A, x, -x)^4) / 8, n))}; /* Michael Somos, Aug 27 2013 */
    

Formula

Theta series is given on page 125 of Conway and Sloane.
Can be determined from A023919 (A*_7): [1] A003781(4n)=A023919(16n) [2] A003781(4n+3)=A023919(16n+12). Let A_7+[1] be the generator of A*_7/A_7, then these correspond to [1]A004008=theta(E_7)=theta(A_7)+theta(A_7+[4]), [2]A005931=theta(E_7+[1])=theta(A_7+[2])+theta(A_7+[6]) - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 03 2000
Expansion of phi(q)^3 * (phi(q)^4 + 7 * phi(-q)^4) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Aug 27 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(13/2) (t / i)^(7/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004008. - Michael Somos, Aug 27 2013
a(4*n + 1) = a(4*n + 2) = 0. - Michael Somos, Jun 11 2007
a(4*n) = A004008(n), a(4*n + 3) = A005931(n). - Michael Somos, Jun 11 2007.
Showing 1-1 of 1 results.