A030444
Number of fixed n-celled polyknights.
Original entry on oeis.org
1, 4, 28, 234, 2162, 20972, 209608, 2135572, 22049959, 229939414, 2416816416, 25569786440, 272057195864
Offset: 1
- G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
Corrected and extended by Guenter Stertenbrink (Sterten(AT)aol.com), May 23 2004
A030446
Number of n-celled polyknights (polyominoes connected by knight's moves).
Original entry on oeis.org
1, 1, 6, 35, 290, 2680, 26379, 267598, 2758016, 28749456, 302120154, 3196299285, 34007337629
Offset: 1
A030447
Number of n-celled polyknights with bilateral symmetry.
Original entry on oeis.org
1, 0, 4, 2, 30, 32, 274, 403, 2694, 4604, 27365, 50777, 282343
Offset: 1
A030448
Number of n-celled polyknights without bilateral symmetry.
Original entry on oeis.org
0, 1, 2, 33, 260, 2648, 26105, 267195, 2755322, 28744852, 302092789, 3196248508, 34007055286
Offset: 1
A363384
Fixed three-dimensional polyknights.
Original entry on oeis.org
1, 12, 276, 7850, 251726, 8628406, 308645452
Offset: 1
Cf.
A363382 (identifying rotations and reflections),
A363383 (identifying only rotations).
Cf.
A030445 (fixed polyknights in two dimensions).
Showing 1-5 of 5 results.
Comments