A030517 Number of walks of length n between two vertices on an icosahedron at distance 1.
1, 2, 13, 52, 273, 1302, 6573, 32552, 163073, 813802, 4070573, 20345052, 101733073, 508626302, 2543170573, 12715657552, 63578483073, 317891438802, 1589458170573, 7947285970052, 39736434733073, 198682149251302, 993410770670573, 4967053731282552
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,10,-20,-25).
Crossrefs
Cf. A030518.
Programs
-
Mathematica
LinearRecurrence[{4, 10, -20, -25}, {1, 2, 13, 52}, 24] (* Jean-François Alcover, Jul 12 2021 *)
-
PARI
Vec(x*(1-2*x-5*x^2)/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30)) \\ Colin Barker, Oct 17 2016
Formula
a(n) = 2*a(n-1) + 2*A030518(n-1) + 5*a(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 + (sqrt(5))^(n+1)/20 + (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4) for n>=5. (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: x*(1 - 2*x - 5*x^2)/((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)