cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030523 A convolution triangle of numbers obtained from A001792.

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 20, 25, 9, 1, 48, 88, 51, 12, 1, 112, 280, 231, 86, 15, 1, 256, 832, 912, 476, 130, 18, 1, 576, 2352, 3276, 2241, 850, 183, 21, 1, 1280, 6400, 10976, 9424, 4645, 1380, 245, 24, 1, 2816, 16896, 34848, 36432, 22363, 8583, 2093, 316, 27, 1
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := s1p(3; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle). Signed version: (-1)^(n-m)*a(n,m) := s1(3; n,m).
With offset 0, this is T(n,k) = Sum_{i=0..n} C(n,i)*C(i+k+1,2k+1). Binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 22 2004
Subtriangle of the triangle T(n,k) given by (0, 3, -1/3, 4/3, 0, 0, 0, 0, 0, 0, 0, ... ) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2013

Examples

			{1}; {3,1}; {8,6,1}; {20,25,9,1}; {48,88,51,12,1}; ...
(0, 3, -1/3, 4/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0   1
0   3   1
0   8   6   1
0  20  25   9   1
0  48  88  51  12   1
...
- _Philippe Deléham_, Feb 20 2013
		

Crossrefs

Cf. A057682 (alternating row sums).

Programs

  • Mathematica
    a[n_, m_] := SeriesCoefficient[(1-2*x)^2/((x^2-x)*y + (1-2*x)^2) - 1, {x, 0, n}, {y, 0, m}]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2015, after Vladimir Kruchinin *)

Formula

a(n, 1) = A001792(n-1).
Row sums = A039717(n).
a(n, m) = 2*(2*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
T(n,k) = 4*T(n-1,k) - 4*T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Feb 20 2013
Sum_{k=1..n} T(n,k)*2^(k-1) = A140766(n). -Philippe Deléham, Feb 20 2013
G.f.: (1-2*x)^2/((x^2-x)*y+(1-2*x)^2)-1. - Vladimir Kruchinin, Apr 28 2015