cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030632 Numbers with 14 divisors.

Original entry on oeis.org

192, 320, 448, 704, 832, 1088, 1216, 1458, 1472, 1856, 1984, 2368, 2624, 2752, 3008, 3392, 3645, 3776, 3904, 4288, 4544, 4672, 5056, 5103, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8019, 8128, 8192, 8384, 8768, 8896, 9477, 9536, 9664, 10048, 10432
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^13 (A138031) or p*q^6 (A189987), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A092759.

Programs

  • Mathematica
    Select[Range[15000], DivisorSigma[0, #] == 14 &]
  • PARI
    is(n)=numdiv(n)==14 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A030632(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,7)[0])-primepi(integer_nthroot(x,13)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025