cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378079 Number of series-reduced noncrossing trees with n edges.

Original entry on oeis.org

1, 1, 0, 4, 5, 33, 91, 408, 1485, 6195, 24838, 103752, 432796, 1834140, 7815900, 33591376, 145197017, 631281591, 2757917260, 12102728740, 53321334381, 235768155073, 1045889996047, 4653534540816, 20761857325000, 92862669150004, 416316199107096, 1870414803490240
Offset: 0

Views

Author

Andrew Howroyd, Nov 21 2024

Keywords

Examples

			The a(3) = 4 trees are:
    o---o    o---o    o   o    o   o
    | \        / |    | /        \ |
    o   o    o   o    o---o    o---o
		

Crossrefs

Programs

  • PARI
    seq(n)={my(g=serreverse(x/(1/(1-x)^2 - 2*x) + O(x*x^n))); Vec(1/(1 - g) - g^2)}

Formula

G.f.: 1/(1 - g(x)) - g(x)^2 where g(x) is the g.f. of A030980.

A030982 Number of noncrossing nonplanted bushes with n nodes, i.e., rooted noncrossing trees with n nodes and no nodes of degree 1.

Original entry on oeis.org

0, 1, 1, 7, 18, 80, 284, 1169, 4628, 19137, 79165, 333058, 1410608, 6029816, 25941384, 112315945, 488862888, 2138161043, 9391903131, 41414729419, 183264846010, 813564012660, 3622193670040, 16170171489820, 72364908958800, 324586284275500, 1458976377988636
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5*Sum[(-1)^(n-k)*2^(n-k)*k*Binomial[n,k]*Binomial[3*k-2,k-2]/ (2*k+1),{k,2,n}]/n,{n,1,20}] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    a(n) = 5*sum(k=2, n, (-1)^(n-k)*2^(n-k)*k*binomial(n,k)*binomial(3*k-2,k-2)/(2*k+1))/n; \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = 5*Sum_{k=2..n} ((-1)^(n-k)*2^(n-k)*k*C(n,k)*C(3*k-2,k-2)/(2*k+1))/n.
Recurrence: 2*n*(2*n+1)*a(n) = (n-1)*(11*n-12)*a(n-1) + 6*(9*n^2-21*n+8) * a(n-2) - 4*(n-3)*(11*n-56)*a(n-3) - 152*(n-4)*(n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 5*19^(n+1/2)/(27*sqrt(Pi)*4^(n+1)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
a(n) = A030981(n) - A030980(n). - Andrew Howroyd, Nov 12 2017
Showing 1-2 of 2 results.