cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031173 Longest edge a of smallest (measured by the longest edge) primitive Euler bricks (a, b, c, sqrt(a^2 + b^2), sqrt(b^2 + c^2), sqrt(a^2 + c^2) are integers).

Original entry on oeis.org

240, 275, 693, 720, 792, 1155, 1584, 2340, 2640, 2992, 3120, 5984, 6325, 6336, 6688, 6732, 8160, 9120, 9405, 10725, 11220, 12075, 13860, 14560, 16800, 17472, 17748, 18560, 19305, 21476, 23760, 23760, 24684, 25704, 26649, 29920, 30780
Offset: 1

Views

Author

Keywords

Comments

Primitive means that gcd(a,b,c) = 1.
The trirectangular tetrahedron (0, a=a(n), b=A031174(n), c=A031175(n)) has three right triangles with area divisible by 6 = 2*3 each and a volume divisible by 15840 = 2^5*3^2*5*11. The biquadratic term b^2*c^2 + a^2*(b^2 + c^2) is divisible by 144 = 2^4*3^2. Also gcd(b + c, c + a, a + b) = 1. - Ralf Steiner, Nov 22 2017
There are some longest edges a which occur multiple times, such as a(31) = a(32) = 23760. - Ralf Steiner, Jan 07 2018
A trirectangular tetrahedron is never a perfect body (in the sense of Wyss) because it always has an irrational area of the base (a,b,c) whose value is half of the length of the space-diagonal of the related cuboid (b*c, c*a, a*b). The trirectangular bipyramid (6 faces, 9 edges, 5 vertices) built from these trirectangular tetrahedrons and the related left-handed ones connected on their bases have rational numbers for volume, face areas and edge lengths, but again an irrational value for the length of the space-diagonal which is a rational part of the length of the space-diagonal of the related cuboid (b*c, c*a, a*b). - Ralf Steiner, Jan 14 2018

References

  • Calculated by F. Helenius (fredh(AT)ix.netcom.com).

Crossrefs