A031366 Number of symmetrically inequivalent coincidence rotations of icosian ring of index n.
1, 0, 0, 25, 36, 0, 0, 0, 100, 0, 288, 0, 0, 0, 0, 440, 0, 0, 800, 900, 0, 0, 0, 0, 960, 0, 0, 0, 1800, 0, 2048, 0, 0, 0, 0, 2500, 0, 0, 0, 0, 3528, 0, 0, 7200, 3600, 0, 0, 0, 2550, 0, 0, 0, 0, 0, 10368, 0, 0, 0, 7200, 0, 7688, 0, 0, 7330, 0, 0, 0, 0, 0, 0, 10368, 0, 0, 0, 0, 20000, 0, 0, 12800, 15840, 8362, 0, 0, 0, 0, 0, 0, 0, 16200, 0, 0, 0, 0, 0, 28800, 0, 0, 0, 28800, 23899
Offset: 1
Links
- M. Baake, Solution of the coincidence problem in dimensions d <= 4, in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.; arXiv:math/0605222 [math.MG], 2006.
- Michael Baake and Peter Zeiner, Coincidences in 4 dimensions, Phil. Mag. 88 (2008), 2025-2032; arXiv:0712.0363 [math.MG]. See Section 4. Caution: there is a typo in a(19).
Crossrefs
Cf. A331143.
Programs
-
Maple
read("transforms") : # expansion of 1/(1-5^(-s)) in (5.10) L1 := [1,seq(0,i=2..200)] : for k from 1 do if 5^k <= nops(L1) then L1 := subsop(5^k=1,L1) ; else break ; end if; end do: # multiplication with 1/(1-p^(-2s)) in (5.10) for i from 1 do p := ithprime(i) ; if modp(p,5) = 2 or modp(p,5)=3 then Laux := [1,seq(0,i=2..200)] : for k from 1 do if p^(2*k) <= nops(Laux) then Laux := subsop(p^(2*k)=1,Laux) ; else break ; end if; end do: L1 := DIRICHLET(L1,Laux) ; end if; if p > nops(L1) then break; end if; end do: # multiplication with 1/(1-p^(-s))^2 in (5.10) for i from 1 do p := ithprime(i) ; if modp(p,5) = 1 or modp(p,5)=4 then Laux := [1,seq(0,i=2..200)] : for k from 1 do if p^k <= nops(Laux) then Laux := subsop(p^k=k+1,Laux) ; else break ; end if; end do: L1 := DIRICHLET(L1,Laux) ; end if; if p > nops(L1) then break; end if; end do: # this is now Zeta_L(s), seems to be A035187 # print(L1) ; # generate Zeta_L(s-1) L1shft := [seq(op(i,L1)*i,i=1..nops(L1))] ; # generate 1/Zeta_L(s) L1x := add(op(i,L1)*x^(i-1),i=1..nops(L1)) : taylor(1/L1x,x=0,nops(L1)) : L1i := gfun[seriestolist](%) ; # generate 1/Zeta_L(2s) L1i2 := [1,seq(0,i=2..nops(L1))] ; for k from 2 to nops(L1i) do if k^2 < nops(L1i2) then L1i2 := subsop(k^2=op(k,L1i),L1i2) ; else break ; end if; end do: # generate Zeta_L(s)*Zeta_L(s-1) DIRICHLET(L1,L1shft) ; # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s) = Phi(s) Phis := DIRICHLET(%,L1i2) ; # generate Phis(s-1) Phishif := [seq(op(i,Phis)*i,i=1..nops(Phis))] ; DIRICHLET(Phis,Phishif) ;
Formula
See Baake (1997) for the Dirichlet g.f.
Extensions
Terms beyond a(36) from R. J. Mathar, Mar 04 2018
New name from Andrey Zabolotskiy, Feb 16 2021
Comments