cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031551 Numbers k such that the continued fraction for sqrt(k) has even period and if the last term of the periodic part is deleted the central term is 53.

Original entry on oeis.org

2811, 2819, 2839, 2843, 2851, 2859, 2863, 2879, 2887, 2903, 2911, 2927, 2931, 2939, 2963, 2971, 2979, 2999, 3007, 3011, 3019, 3023, 11240, 11264, 11296, 11328, 11336, 11424, 11432, 11456, 11520, 11560, 11584, 11616, 11624, 11648, 11680, 11712, 11720
Offset: 1

Views

Author

Keywords

Comments

"Central term" means the term at 1/2 of the length of the repeating part, not the term following that term, e.g., if the terms are {a,b,c,d}, the "central term" is b, not c. - Harvey P. Dale, May 19 2012
Includes 2809 * k^2 + 2 * k for k >= 1, where the continued fraction has initial term 53*k and periodic part [53, 106*k], and 3025 * k^2 - 2 * k for k >= 1, where the continued fraction has initial term 55*k-1 and periodic part [1, 53, 1, 110*k-2]. - Robert Israel, Apr 11 2023

Programs

  • Mathematica
    epQ[n_]:=Module[{p=ContinuedFraction[Sqrt[n]][[2]],len},len=Length[p];EvenQ[len]&&p[[len/2]]==53]; nn=12000;With[{trms=Complement[Range[ nn], Range[Floor[Sqrt[nn]]]^2]},Select[trms,epQ]]  (* Harvey P. Dale, May 19 2012 *)

Extensions

Definition clarified by Harvey P. Dale, Apr 11 2022