A031603 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted the two central terms are both 15.
2858, 3074, 5122, 7177, 7517, 9773, 10169, 13681, 14149, 16673, 17189, 17713, 17978, 18514, 20525, 21097, 22265, 22861, 26041, 27337, 27997, 30113, 32213, 33653, 35594, 35969, 37489, 37874, 38261, 39041, 39434, 39829, 45673, 52825, 54785, 55717
Offset: 1
Keywords
Crossrefs
Subsequence of A003814.
Programs
-
Mathematica
opct15Q[n_]:=Module[{sr=Sqrt[n],cf,len},cf=If[IntegerQ[sr],{}, ContinuedFraction[ sr][[2]]];len=Length[cf];OddQ[len]&&Take[cf,{Floor[ len/2],Floor[len/2]+1}]=={15,15}]; Select[Range[56000],opct15Q] (* Harvey P. Dale, Jun 11 2013 *)
Extensions
Corrected by Harvey P. Dale, Jun 11 2013