A031620 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted the two central terms are both 32.
13274, 21106, 21397, 21985, 44269, 58789, 75914, 77573, 78689, 93997, 96461, 114685, 116041, 118777, 120157, 139658, 143413, 162229, 163034, 163841, 167906, 169546, 170369, 196093, 219865, 227417, 229325, 249962, 250961, 252965, 253970
Offset: 1
Keywords
Crossrefs
Subsequence of A003814.
Programs
-
Mathematica
cf32Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{1,1},ContinuedFraction[ s][[2]]];len=Length[cf];OddQ[len]&&cf[[Floor[len/2]]]==cf[[Ceiling[len/2]]] == 32]; Select[ Range[254000],cf32Q] (* Harvey P. Dale, May 01 2022 *)
Extensions
First term 1025 removed by Georg Fischer, Jun 16 2019