A031702 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 24.
145, 578, 1299, 2308, 3605, 5190, 7063, 9224, 11673, 14410, 17435, 20748, 24349, 28238, 32415, 36880, 41633, 46674, 52003, 57620, 63525, 69718, 76199, 82968, 90025, 97370, 97994, 105003, 112924, 121133, 129630, 138415, 147488, 156849, 166498
Offset: 1
Keywords
Examples
The continued fraction for sqrt(97994) is 313, [25, 24, 25, 626], where the smallest term of the periodic part is 24, so 97994 belongs to the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A031424.
Programs
-
Mathematica
Select[Range[200000], !IntegerQ[Sqrt[#]] && Min[ContinuedFraction[Sqrt[#]][[2]]] == 24&] (* Vincenzo Librandi, Feb 06 2012 *)
-
Python
from sympy import continued_fraction_periodic A031702_list = [n for n, s in ((i, continued_fraction_periodic(0,1,i)[-1]) for i in range(1,10**5)) if isinstance(s, list) and min(s) == 24] # Chai Wah Wu, Jun 08 2017