A031980 a(n) is the smallest number >= 1 not occurring earlier and not the sum of cubes of two distinct earlier terms.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77
Offset: 1
References
- Mihaly Bencze [Beneze], Smarandache recurrence type sequences, Bulletin of pure and applied sciences, Vol. 16E, No. 2, 1997, pp. 231-236.
- F. Smarandache, Properties of numbers, ASU Special Collections, 1973.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..4900
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Eric Weisstein's World of Mathematics, Smarandache Sequences
Crossrefs
Programs
-
Magma
m:=77; a:=[]; a2:={}; for n in [1..m] do p:=1; u:= a2 join { x: x in a }; while p in u do p:=p+1; end while; if p gt m then break; end if; a2:=a2 join { x^3 + p^3: x in a | x^3 + p^3 le m }; Append(~a,p); end for; print a; // Klaus Brockhaus, Jul 16 2008
-
Mathematica
A031980 = {1}; Do[ m = Ceiling[(n-1)^(1/3)]; s = Select[ A031980, # <= m &]; ls = Length[s]; sumOfCubes = Union[ Flatten[ Table[ s[[i]]^3 + s[[j]]^3, {i, 1, ls}, {j, i+1, ls}]]]; If[ FreeQ[ sumOfCubes, n], AppendTo[ A031980, n] ], {n, 2, 77}]; A031980 (* Jean-François Alcover, Dec 14 2011 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Sep 26 2000
Better definition from Klaus Brockhaus, Jul 16 2008