A032027 Number of planted planar trees (n+1 nodes) where any 2 subtrees extending from the same node are different.
1, 1, 1, 3, 5, 13, 35, 95, 255, 715, 2081, 6003, 17645, 52127, 155863, 468129, 1415521, 4301055, 13134789, 40275109, 123970669, 382919917, 1186475687, 3686899725, 11487023793, 35876838669, 112304155021, 352276801491
Offset: 1
Examples
From _Gus Wiseman_, Nov 15 2022: (Start) The a(1) = 1 through a(6) = 13 ordered rooted identity trees (ranked by A358374): o (o) ((o)) ((o)o) (((o))o) (((o)o)o) (o(o)) (((o)o)) ((o(o))o) (((o))) ((o(o))) (o((o)o)) (o((o))) (o(o(o))) ((((o)))) ((((o)))o) ((((o))o)) ((((o)o))) (((o))(o)) (((o(o)))) ((o)((o))) ((o((o)))) (o(((o)))) (((((o))))) (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Mathematica
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],FreeQ[#,[_]?(!UnsameQ@@#&)]&]],{n,1,10}] (* Gus Wiseman, Nov 15 2022 *)
-
PARI
AGK(v)={apply(p->subst(serlaplace(y^0*p),y,1), Vec(prod(k=1, #v, (1 + x^k*y + O(x*x^#v))^v[k])-1, -#v))} seq(n)={my(v=[1]); for(i=2, n, v=concat([1], AGK(v))); v} \\ Andrew Howroyd, Sep 20 2018
Formula
Shifts left under "AGK" (ordered, elements, unlabeled) transform.