A032169 Number of aperiodic necklaces of n beads of 2 colors, 11 of them black.
1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32065, 58786, 104006, 178296, 297160, 482885, 766935, 1193010, 1820910, 2731365, 4032015, 5864749, 8414640, 11920740, 16689036, 23107896, 31666376, 42975796
Offset: 12
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 12..1012
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to Lyndon words
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1,1,-10,45,-120,210,-252,210,-120,45,-10,1).
Crossrefs
A column of triangle A011847.
Programs
-
Mathematica
CoefficientList[Series[x^11/11 (1/(1-x)^11-1/(1- x^11)),{x,0,50}],x] (* Herbert Kociemba, Oct 16 2016 *)
Formula
"CHK[ 11 ]" (necklace, identity, unlabeled, 11 parts) transform of 1, 1, 1, 1, ...
G.f.: (x^11/11)*(1/(1-x)^11-1/(1-x^11)). - Herbert Kociemba, Oct 16 2016
a(n) = (1/11)*(binomial(n-1, 10) - I(11|n)) = floor(binomial(n-1, 10)/11) for n >= 12, where I(a|b) = 1 if integer a divides integer b, and 0 otherwise. - Petros Hadjicostas, Aug 26 2018
Comments