A032189 Number of ways to partition n elements into pie slices each with an odd number of elements.
1, 1, 2, 2, 3, 4, 5, 7, 10, 14, 19, 30, 41, 63, 94, 142, 211, 328, 493, 765, 1170, 1810, 2787, 4340, 6713, 10461, 16274, 25414, 39651, 62074, 97109, 152287, 238838, 375166, 589527, 927554, 1459961, 2300347, 3626242, 5721044, 9030451, 14264308, 22542397, 35646311, 56393862, 89264834, 141358275
Offset: 1
Keywords
Links
- C. G. Bower, Transforms (2)
- P. Flajolet and M. Soria, The Cycle Construction In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- Petros Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021.
- Index entries for sequences related to necklaces
Programs
-
Mathematica
a1350[n_] := Sum[Binomial[k - 1, 2k - n] n/(n - k), {k, 0, n - 1}]; a[n_] := 1/n Sum[EulerPhi[n/d] a1350[d], {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Jul 29 2018, after Petros Hadjicostas *)
-
PARI
N=66; x='x+O('x^N); B(x)=x/(1-x^2); A=sum(k=1,N,eulerphi(k)/k*log(1/(1-B(x^k)))); Vec(A) /* Joerg Arndt, Aug 06 2012 */
-
Python
from sympy import totient, lucas, divisors def A032189(n): return sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n,generator=True))//n # Chai Wah Wu, Sep 23 2023
Formula
a(n) = A000358(n)-(1+(-1)^n)/2.
"CIK" (necklace, indistinct, unlabeled) transform of 1, 0, 1, 0...(odds)
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x/(1-x^2). [Joerg Arndt, Aug 06 2012]
a(n) = (1/n)*Sum_{d divides n} phi(n/d)*A001350(d). - Petros Hadjicostas, Dec 27 2016
Comments