A032249 "DHK[ 8 ]" (bracelet, identity, unlabeled, 8 parts) transform of 1,1,1,1,...
5, 14, 42, 90, 197, 368, 680, 1152, 1926, 3044, 4740, 7100, 10494, 15072, 21384, 29680, 40755, 54994, 73502, 96854, 126555, 163424, 209456, 265792, 335036, 418728, 520200, 641496, 786828, 958848, 1162800, 1402080
Offset: 11
Keywords
Links
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
Formula
From Petros Hadjicostas, Feb 24 2019, proven in Hadjicostas (2019): (Start)
Let gf(k, x) = x^k/2 * ( (1/k)*Sum_{n|k} phi(n)/(1 - x^n)^(k/n) - (1 + x)/(1 -x^2)^floor(k/2 + 1) ) be Herbert Kociemba's formula for the g.f. of the number of all bracelets with k black beads and n-k white beads that have no reflection symmetry.
We conjecture that g.f. = Sum_{n>=1} a(n)*x^n = gf(8,x) - gf(4, x^2).
(End)
G.f.: (x^k/(2*k)) * Sum_{d|k} mu(d) * (1/(1 - x^d)^(k/d) - k*(1 + x^d)/(1 - x^(2*d))^floor(k/(2*d) + 1)) with k = 8. - Petros Hadjicostas, May 24 2019
a(n) = (1/16)* Sum_{d|gcd(n, 8)} mu(d) * (binomial((n/d) - 1, (8/d) - 1) - 8 * binomial(floor(b(n,d)/2), floor(4/d))) for n >= 11, where b(n,d) = n/d + ((-1)^(8/d) - 1)/2. (Thus, b(n,d) = n/d for d = 1, 2, 4, and b(n, d) = n/d - 1 for d = 8.) - Petros Hadjicostas, May 27 2019
Comments