cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032249 "DHK[ 8 ]" (bracelet, identity, unlabeled, 8 parts) transform of 1,1,1,1,...

Original entry on oeis.org

5, 14, 42, 90, 197, 368, 680, 1152, 1926, 3044, 4740, 7100, 10494, 15072, 21384, 29680, 40755, 54994, 73502, 96854, 126555, 163424, 209456, 265792, 335036, 418728, 520200, 641496, 786828, 958848, 1162800, 1402080
Offset: 11

Views

Author

Keywords

Comments

Here, a(n) is the number of aperiodic bracelets with k = 8 black beads and n-k = n-8 white beads that have no reflection symmetry. We conjecture that we can use Herbert Kociemba's formula from the documentation of sequences A008804 and A032246 to derive the g.f. of (a(n): n >= 1). See below for more details. - Petros Hadjicostas, Feb 24 2019

Crossrefs

Formula

From Petros Hadjicostas, Feb 24 2019, proven in Hadjicostas (2019): (Start)
Let gf(k, x) = x^k/2 * ( (1/k)*Sum_{n|k} phi(n)/(1 - x^n)^(k/n) - (1 + x)/(1 -x^2)^floor(k/2 + 1) ) be Herbert Kociemba's formula for the g.f. of the number of all bracelets with k black beads and n-k white beads that have no reflection symmetry.
We conjecture that g.f. = Sum_{n>=1} a(n)*x^n = gf(8,x) - gf(4, x^2).
(End)
G.f.: (x^k/(2*k)) * Sum_{d|k} mu(d) * (1/(1 - x^d)^(k/d) - k*(1 + x^d)/(1 - x^(2*d))^floor(k/(2*d) + 1)) with k = 8. - Petros Hadjicostas, May 24 2019
a(n) = (1/16)* Sum_{d|gcd(n, 8)} mu(d) * (binomial((n/d) - 1, (8/d) - 1) - 8 * binomial(floor(b(n,d)/2), floor(4/d))) for n >= 11, where b(n,d) = n/d + ((-1)^(8/d) - 1)/2. (Thus, b(n,d) = n/d for d = 1, 2, 4, and b(n, d) = n/d - 1 for d = 8.) - Petros Hadjicostas, May 27 2019