A032250 "DHK[ n ](2n)" (bracelet, identity, unlabeled, n parts, evaluated at 2n) transform of 1,1,1,1,...
1, 1, 1, 2, 10, 29, 113, 368, 1316, 4490, 15907, 55866, 199550, 714601, 2583575, 9385280, 34311304, 126018592, 465044951, 1722987050, 6407739430, 23909854891, 89493459541, 335911158480, 1264104712300
Offset: 1
Keywords
Links
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
Programs
-
Maple
# This is a crude program that assumes the above conjecture is true (which was later proved in Hadjicostas (2019)). It is only valid for n >= 3 because of Bower's special definition of DHK[k] for the cases k=1 and k=2. with(NumberTheory); ff := proc (k, x) (1/2)*x^k*(add(phi(n)/(1-x^n)^(k/n), n in Divisors(k))/k-(x+1)/(1-x^2)^floor((1/2)*k+1)); end proc; gg := proc (k, x) add(Moebius(d)*ff(k/d, x^d), d in Divisors(k)); end proc; vv := proc (n) simplify(subs(x = 0, diff(gg(n, x), x$(2*n)))/factorial(2*n)); end proc; for i from 3 to 100 do print(i, vv(i)); end do; # Petros Hadjicostas, Feb 24 2019
Comments