cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032262 Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.

Original entry on oeis.org

1, 1, 2, 5, 17, 83, 557, 4715, 47357, 545963, 7087517, 102248075, 1622633597, 28091569643, 526858352477, 10641342978635, 230283190994237, 5315654682014123, 130370767029201437, 3385534663256976395
Offset: 0

Views

Author

Keywords

Examples

			For n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123 .1234
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4
.(3)....(6)...(3)..(4)...(1) Total a(4) = 17
		

Crossrefs

Row sums of triangle A133800.

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := 2^(n-2) + HurwitzLerchPhi[1/2, 1-n, 0]/2;
    Array[a, 20, 0] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)={my(p=exp(x + O(x*x^n))-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018

Formula

a(n) = 2^(n-2) + A000670(n-1) for n >= 2. - N. J. A. Sloane, Jan 17 2008
a(n) = 2^(n-1) + Sum_{k >= 3} Stirling_2(n,k)*(k-1)!/2 for n >= 1. - N. J. A. Sloane, Jan 17 2008
"DIJ" (bracelet, indistinct, labeled) transform of 1, 1, 1, 1, ... (see Bower link).
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - 1. - Andrew Howroyd, Sep 12 2018

Extensions

Edited by N. J. A. Sloane, Jan 17 2008
a(0)=1 prepended by Andrew Howroyd, Sep 12 2018