A032262 Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.
1, 1, 2, 5, 17, 83, 557, 4715, 47357, 545963, 7087517, 102248075, 1622633597, 28091569643, 526858352477, 10641342978635, 230283190994237, 5315654682014123, 130370767029201437, 3385534663256976395
Offset: 0
Keywords
Examples
For n = 4 we have the following "pies": . 1 ./ \ 2 . 3 . 12 .. 12 . 123 .1234 .\ / .. / \ .(..)..(..) . 4 .. 3--4 . 34 .. 4 .(3)....(6)...(3)..(4)...(1) Total a(4) = 17
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- C. G. Bower, Transforms (2)
Crossrefs
Row sums of triangle A133800.
Programs
-
Mathematica
a[0] = a[1] = 1; a[n_] := 2^(n-2) + HurwitzLerchPhi[1/2, 1-n, 0]/2; Array[a, 20, 0] (* Jean-François Alcover, Aug 26 2019 *)
-
PARI
seq(n)={my(p=exp(x + O(x*x^n))-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018
Formula
a(n) = 2^(n-2) + A000670(n-1) for n >= 2. - N. J. A. Sloane, Jan 17 2008
a(n) = 2^(n-1) + Sum_{k >= 3} Stirling_2(n,k)*(k-1)!/2 for n >= 1. - N. J. A. Sloane, Jan 17 2008
"DIJ" (bracelet, indistinct, labeled) transform of 1, 1, 1, 1, ... (see Bower link).
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - 1. - Andrew Howroyd, Sep 12 2018
Extensions
Edited by N. J. A. Sloane, Jan 17 2008
a(0)=1 prepended by Andrew Howroyd, Sep 12 2018