cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217205 Triangle read by rows, related to Bell numbers A000110: A216963 interlaced with A217202.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 7, 5, 2, 11, 28, 28, 16, 5, 41, 131, 153, 118, 71, 16, 162, 690, 872, 892, 759, 272, 61, 715, 4033, 5191, 7060, 7262, 3468, 1665, 272, 3425, 25864, 32398, 58608, 66510, 41088, 29778, 7936, 1385, 17722, 180265, 211937, 510812, 601080, 479772, 443231, 156176, 60991, 7936
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2012

Keywords

Comments

See Ma and Chow (2012) for precise definition (cf. On combinations of polynomials and Euler numbers).

Examples

			Triangle begins:
1
1,1
1,2,1
4,7,5,2
11,28,28,16,5
41,131,153,118,71,16
162,690,872,892,759,272,61
...
		

Crossrefs

First column appears to be A032265.

Programs

  • Mathematica
    P[1] := x y; P[n_] := P[n] = ((n-1) q + x y) P[n-1] + 2 q (1-q) D[P[n-1], q] + x (1-q) D[P[n-1], x] + (1-y) D[P[n-1], y] // Simplify;
    V[1] = x y; V[n_] := V[n] = ((n-1) q + x y) V[n-1] + 2 q (1-q) D[V[n-1], q] + 2 x (1-q) D[V[n-1], x] + (1 - 2 y + q y) D[V[n-1], y] // Simplify;
    Dn[n_] := P[n] /. {x -> 1, y -> 0};
    Dbar[n_] := V[n] /. {x -> 1, y -> 0};
    Inq[1] = 1; Inq[n_] := (Dn[n] /. q -> q^2) + q (Dbar[n] /. q -> q^2);
    Table[CoefficientList[Inq[n], q], {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
  • PARI
    tabl(m) = { J = 1; for (d=0, poldegree(J, q), print1(polcoeff(J, d, q), ", "); ); print(""); Pa = x; Pb = x; Pa1 = subst(Pa, x, 1);  Pb1 = subst(Pb, x, 1); J = subst(Pa1, q, q^2) + q*subst(Pb1, q, q^2); for (d=0, poldegree(J, q), print1(polcoeff(J, d, q), ", "); ); print(""); Qa = (1+q)*x; Qb = 2*x; for (n=3, m, Qa1 = subst(Qa, x, 1); Qb1 = subst(Qb, x, 1); J = subst(Qa1, q, q^2) + q*subst(Qb1, q, q^2); for (d=0, poldegree(J, q), print1(polcoeff(J, d, q), ", "); ); print(""); newPa = n*q*Qa + 2*q*(1-q)*deriv(Qa,q) + x*(1-q)*deriv(Qa,x) + n*x*Pa; newPb = n*q*Qb + 2*q*(1-q)*deriv(Qb,q) + 2*x*(1-q)*deriv(Qb,x) + n*x*Pb; Pa = Qa; Qa = newPa; Pb = Qb; Qb = newPb;);} \\ Michel Marcus, Feb 11 2013

Extensions

More terms from Michel Marcus, Feb 11 2013
Showing 1-1 of 1 results.