A032278 Number of ways to partition n elements into pie slices each with at least 2 elements allowing the pie to be turned over.
0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 15, 25, 30, 48, 63, 98, 132, 208, 290, 454, 656, 1021, 1509, 2358, 3544, 5535, 8441, 13200, 20318, 31835, 49352, 77435, 120710, 189673, 296853, 467159, 733362, 1155646, 1818593, 2869377, 4524080
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- C. G. Bower, Transforms (2)
Programs
-
Maple
A032278_list := proc(n) local ele ; ele := [0,seq(1,i=1..30)] ; DIK(ele) ; # defined in A032287 end proc: A032278_list(50) ; # R. J. Mathar, Feb 14 2025
-
PARI
seq(n)={Vec(x^2/((1-x)*(1-x^2-x^4)) + sum(d=1, n, eulerphi(d)/d*log((1-x^d)/(1-x^d-x^(2*d)) + O(x*x^n))), -n)/2} \\ Andrew Howroyd, Jun 20 2018
Formula
"DIK" (bracelet, indistinct, unlabeled) transform of 0, 1, 1, 1, ...
G.f.: (x^2/((1 - x)*(1 - x^2 - x^4)) + Sum_{d>0} phi(d)*log((1 - x^d)/(1 - x^d - x^(2*d)))/d)/2. - Andrew Howroyd, Jun 20 2018