cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276550 Array read by antidiagonals: T(n,k) = number of primitive (period n) bracelets using a maximum of k different colored beads.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 7, 3, 0, 6, 10, 16, 15, 6, 0, 7, 15, 30, 45, 36, 8, 0, 8, 21, 50, 105, 132, 79, 16, 0, 9, 28, 77, 210, 372, 404, 195, 24, 0, 10, 36, 112, 378, 882, 1460, 1296, 477, 42, 0, 11, 45, 156, 630, 1848, 4220, 5890, 4380, 1209, 69, 0
Offset: 1

Views

Author

Andrew Howroyd, Apr 09 2017

Keywords

Comments

Turning over will not create a new bracelet.

Examples

			Table starts:
  1  2   3    4     5      6      7       8 ...
  0  1   3    6    10     15     21      28 ...
  0  2   7   16    30     50     77     112 ...
  0  3  15   45   105    210    378     630 ...
  0  6  36  132   372    882   1848    3528 ...
  0  8  79  404  1460   4220  10423   22904 ...
  0 16 195 1296  5890  20640  60021  151840 ...
  0 24 477 4380 25275 107100 364854 1057392 ...
  ...
		

Crossrefs

Programs

  • Maple
    A276550 := proc(n,k)
        local d ;
        add( numtheory[mobius](n/d)*A081720(d,k),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A276550(n,d-n),n=1..d-1),d=2..10) ; # R. J. Mathar, Jan 22 2022
  • Mathematica
    t[n_, k_] := Sum[EulerPhi[d] k^(n/d), {d, Divisors[n]}]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4;
    T[n_, k_] := Sum[MoebiusMu[d] t[n/d, k], {d, Divisors[n]}];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 26 2020 *)

Formula

T(n, k) = Sum_{d|n} mu(n/d) * A081720(d,k) for k<=n. Corrected Jan 22 2022
Showing 1-1 of 1 results.