cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371546 Expansion of e.g.f. Product_{k>=1} 1 / (1 - 2*x^k/k!).

Original entry on oeis.org

1, 2, 10, 62, 522, 5262, 64006, 897990, 14416618, 259650638, 5197438710, 114360488310, 2745242514966, 71378953200310, 1998718342001062, 59962112293963182, 1918813454880552298, 65239810516299767310, 2348641102002493520086, 89248414267689180772278, 3569939582019832830181222
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - 2 x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ c * 2^n * n!, where c = Product_{k>=2} 1/(1 - 2^(1-k)/k!) = 1.39938283723373672673056837661175942499559257652969647531100283042201554... - Vaclav Kotesovec, Mar 28 2024

A371548 Expansion of e.g.f. Product_{k>=1} (1 + 2*x^k/k).

Original entry on oeis.org

1, 2, 2, 16, 44, 248, 2136, 13536, 116448, 1075392, 13066560, 136385280, 1811975040, 23777683200, 354509003520, 5632664970240, 93712140103680, 1631567291719680, 30968760551178240, 605247894280028160, 12515132360676556800, 274444506310599475200
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + 2 x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ n! * n / (2*exp(2*gamma)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 28 2024
Showing 1-2 of 2 results.