cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371310 Expansion of e.g.f. Product_{k>=1} (1 + prime(k)*x^k/k!).

Original entry on oeis.org

1, 2, 3, 23, 47, 231, 2260, 6527, 35151, 224759, 3434124, 12476055, 79758206, 491191521, 4752819625, 105146082344, 393097093065, 2976053272527, 21569670506914, 188844207315245, 2277243901499454, 72603521472295945, 326137558352646889, 2491611720654851668
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

"EFJ" (unordered, size, labeled) transform of primes.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + Prime[k] x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A371311 Expansion of e.g.f. Product_{k>=1} (1 + k*x^k/(k-1)!).

Original entry on oeis.org

1, 1, 4, 21, 52, 465, 3306, 14161, 74208, 960777, 10558630, 44851521, 361716576, 2473446157, 46951741760, 735722365995, 3502764883456, 27660533205537, 257573937401838, 2415069153393553, 62591287234200960, 1356650271603527061, 6966660193683272104, 61046400429116180475
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

"EFJ" (unordered, size, labeled) transform of squares.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + k x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-2 of 2 results.