cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A319175 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k/k!)^n.

Original entry on oeis.org

1, 1, 4, 36, 416, 6000, 106542, 2242093, 54399424, 1495318752, 45938780750, 1559858659359, 58007497143180, 2344682328265823, 102352889947823998, 4798930456964580045, 240518006611511552896, 12832137350594892322464, 726108032647676403262710, 43434461707962856186584307
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[(1 + x^k/k!)^n, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[Exp[n Sum[Sum[(-1)^(k + 1) x^(j k)/(k (j!)^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)).

A371552 Expansion of e.g.f. Product_{k>=1} (1 - x^k/k!)^3.

Original entry on oeis.org

1, -3, 3, 18, -57, -138, 246, 4281, 13383, -156906, -450822, -957729, 23375886, 289894875, -179027895, -3403581357, -174968380137, -419588974650, 4439383168602, 50400469832883, 1027067921064738, 428364930324489, -18456487538087145, -1019962180000311267
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 - x^k/k!)^3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-2 of 2 results.