cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032427 Coefficients of Jacobi elliptic function c(4,m).

Original entry on oeis.org

1, 11069, 4494351, 834687179, 109645021894, 11966116940238, 1171517154238290, 107266611330420090, 9412382749388124015, 803475280086029066515, 67362921649153881472361, 5581153512072331417781229
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A060928 (4th lower diagonal).

Programs

  • Maple
    a:=proc(n) options remember: local m: if n>2 then if n mod 2 = 0 then m:=n/2-1: RETURN(-4*(1+k^2)*a(n-2)+6*k^2*add(binomial(n-2,2*v)*a(2*v)*a(n-2-2*v),v=1..m-1)) else m:=(n-1)/2-1: RETURN(-(1+k^2)*a(n-2)+2*k^2*add(binomial(n-2,2*v+1)*a(2*v+1)*a(n-3-2*v),v=0..m-1)) fi else RETURN([1,2][n]) fi:end: seq(abs(coeff(a(2*i+1),k,8)),i=4..23); # Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
  • Mathematica
    a[n_] := a[n] = Module[{m}, If[n > 2, If[Mod[n, 2] == 0, m = n/2 - 1; Return[-4*(1 + k^2)*a[n - 2] + 6*k^2*Sum[Binomial[n - 2, 2*v]*a[2*v]*a[n - 2 - 2*v], {v, 1, m - 1}]], m = (n - 1)/2 - 1; Return[-(1 + k^2)*a[n - 2] + 2*k^2*Sum[Binomial[n - 2, 2*v + 1]*a[2*v + 1]*a[n - 3 - 2*v], {v, 0, m - 1}]]], Return[{1, 2}[[n]]]]];
    Table[Abs[Coefficient[a[2*i + 1], k, 8]], {i, 4, 15}] (* Jean-François Alcover, Jul 08 2022, after Herman Jamke's Maple code *)

Formula

a(n) = (3^(4*n+19) - (24*n+36)*7^(2*n+9) + (96*n^2+312*n+150)*5^(2*n+9) - (256*n^3+1344*n^2+1520*n+117)*3^(2*n+9) + 512*n^4+3584*n^3+6208*n^2+1336*n-846) / 196608. - Vaclav Kotesovec after Fransen, Jul 30 2013

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010