cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032442 Expansion of 1 / Product_{k >= 1} (1-q^k)^2*(1-q^(11k))^2.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 754, 1169, 1780, 2685, 3996, 5894, 8600, 12450, 17860, 25442, 35964, 50519, 70490, 97800, 134892, 185099, 252664, 343280, 464200, 625033, 837998, 1119114, 1488720, 1973210, 2606028, 3430238, 4500224, 5885540
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + ...
G.f. = 1/q + 2 + 5*q + 10*q^2 + 20*q^3 + 36*q^4 + 65*q^5 + 110*q^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^11])^-2, {x, 0, n}]; (* Michael Somos, Apr 21 2015 *)
    nmax=60; CoefficientList[Series[Product[1/((1-x^k)^2 * (1-x^(11*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^-2, n))}; /* Michael Somos, Apr 21 2015 */

Formula

Expansion of 1 / (f(-x) * f(-x^11))^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Apr 21 2015
Expansion of q / eta(q)^2 * eta(q^11)^2 in powers of q. - Michael Somos, Apr 21 2015
Euler transform of period 11 sequence [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, ...]. - Michael Somos, Apr 21 2015
Given g.f. A(x), then B(q) = A(q)/q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2 * (w^2 + 16*v^2) - v^2 * (v + 4*u) * (w + 4*u). - Michael Somos, Apr 21 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^-1 (t/i)^-2 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 21 2015
G.f.: (Product_{k > 0} (1 - x^k)^2 * (1 - x^(11*k)))^-2.
Convolution inverse of A006571. Convolution with A028610 is A128525. - Michael Somos, Apr 21 2015
a(n) ~ exp(4*Pi*sqrt(n/11)) / (sqrt(2) * 11^(1/4) * n^(7/4)). - Vaclav Kotesovec, Oct 13 2015