A032515 Sum of the integer part of 5/2-th roots of integers less than or equal to n.
0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 174, 179, 184, 189, 194, 199
Offset: 0
Examples
1^(2/5) = 1. 2^(2/5) = 1.3195... 3^(2/5) = 1.5518... 4^(2/5) = 1.7411... 5^(2/5) = 1.90365... 6^(2/5) = 2.047672511... Hence a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7.
Programs
-
Mathematica
Accumulate[Table[Floor[n^(2/5)], {n, 0, 59}]] (* Alonso del Arte, Jun 13 2017 *)
-
PARI
a(n)=sum(k=1,n, sqrtnint(k^2,5)) \\ Charles R Greathouse IV, Jun 25 2017
Formula
a(0) = 0, a(n) = a(n - 1) + floor(n^(2/5)). - Alonso del Arte, Jun 18 2017
a(n) = (5/7)*n^(7/5) + O(n). - Charles R Greathouse IV, Jun 25 2017